

How to build a confidential cloud?

A platform for next generation medical research

Florent Dufour

Leibniz Supercomputing Centre Technical University of Munich Jan Peschke

Quobyte GmbH

Context and rationale

The situation: we need trust

Health Data

Scarce, fragmented, highly sensitive and regulated personally identifiable data

Artificial Intelligence

Turns large amount of diverse, un-biased, datasets into medical insights

TREs are highly secure computing environments that provide remote access to health data for approved researchers to use in research that can save and improve lives

Security and Privacy

Technical, organisational, and algorithmic measures to protect patients

Legal compliance

Provides a framework to present a security concept into a sustainable service

The problem: where does the trust come from?

Confidential computing: Data is end-to-end encrypted

Data in use

Data as it is currently being processed, accessed, or manipulated. It is the data in memory and in the processor. Encryption with hardware components TEEs.

Data in transit

Data as it is transmitted between locations over a network of the internet. Encryption with software protocols like HTTPS, SSL, TLS...

Blue print

The DigiMed Secure Cloud: A sovereign OpenStack platform

The DigiMed Secure Cloud: What's inside the box?

The DigiMed Secure Cloud: What's inside the box?

Data is encrypted in all states: at rest, in flight, in use. Data access is controlled.

The DigiMed Secure Cloud: six design principles

> 150 documents

Zero-trust

End-to-end data encryption

Access control and identity management

Data anonymization and pseudonymization

Continuous monitoring and user training

Compliance and regulatory frameworks

There is not "the storage system", but a bunch of distributed computers

How to achieve it?

1. Block any unauthenticated access Trusted Networks: "NONE"

- 2. Transport-Security as default
- 3. Grant access between storage nodes TLS Certificates
- 4. Grant access to clients

TLS Certificates

Access Keys

X.509 Certificates & Access Keys

- X.509 Certificates: Ideal for untrusted networks/hosts. Certificates are verified locally. Restrictions can be assigned and modified in real-time: Tenant access, Operations limits (user/group), Volume access, Read-only access, Root squash.
- Access Keys: Granular user session authentication (like S3 credentials).
 Clients access only assigned tenants. Enforces IO mapping to user's uid/gid, crucial for containerized environments. Used by Quobyte's CSI plugin.

The DigiMed Secure Cloud: Use case examples

The DigiMed Secure Cloud: Lessons learned

You need MORE people than you think

Establish a clear escalation process

Don't make it just **secure**

Manage expectations

F You can do it!

Any question?

Acknowledgments

LRZ

Prof. Dieter Kranzlmüller

Dr. Roland Pichler

Dr. Nicolay J. Hammer

Dr. Peter Zinterhof

Dr. Naweiluo Zhou

Vinzent Bode

Valentin Pfeil

Yassine Sfar

DigiMed

Dr. Jens Wiehler

Dr. Tim-Henrik Bruun

Anja Kroke

All partners

Quobyte team

